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Motivation
Maintaining continues balance between generation and load demand
Maintaining system frequency, voltage level and security at minimum cost
Minimizing transmission losses
Even distribution of spare capacity
Various methods are used to achieve these goals, one of which is by the use of 

quadratic programming technique



Quadratic programming
General quadratic programming problem can be expressed in the form,

Max f(X) = CX + XTDX + constant (n variables)
S t AX ≤ b                                                   (m constraints)

X ≥ 0                                       (n variable constraints)
Where,X = [X1, X2….Xn]T is a nx1 vector consisting set of decision variable 

D- nxn dimensional real symmetric matrix 
C is a real valued n –dimension vector

The objective function has two part 
Quadratic part - XTDX 
Linear part – CX and the constraints



Quadratic programming continued..
General “Kuhn–Tucker conditions" of nonlinear programming for solution to be optimal,

λ ≥ 0 
f(X) - λ g(X) = 0

λi gi(X) = 0
g(X) ≤ 0

Applying Kuhn–Tucker condition to quadratic programming problem,
λ , μ ≥ 0

C + 2XTD – (λ μ ) (A –I)T 
λi gi(X) = 0

g(X) = (A  –I)T X – (b 0)T ≤ 0
μ = [μ1, μ2….. μn] Lagrangian multiplier (as many as number of variables = n)
λ = [λ1,λ2 ……. λm] Lagrangian multiplier (as many as number of constraints = m)



Quadratic programming continued..
Previous equation can be re-written as 

λ , μ ≥ 0
C = -2XTD + (λ μ ) (A –I)T = 0 

λi ( Ai Xi – b ) = 0
μj Xj = 0
AX ≤ b
X ≥ 0

Since AX ≤ b, we can introduce a slack variable “S” such that 
AX + S = b

λi Si = 0



Quadratic programming continued..
So now the Kuhn–Tucker conditions reduced to following sets of equation

-2XTD + λT A - μT = C …………………………… (1)
AX + s = b …….………………………(2)

λi Si = 0 ….…………………………(3)
μj Xj = 0 …….………………………(4)
λ μ ≥ 0 ………………….…………(5)

X ≥ 0  s ≥ 0  …….………………………(6)



Quadratic programming continued..
Xλμ
s

=
C
b

X λ μ s ≥ 0 
Solving for X, λ, μ,s such that it satisfies all these equation, give us the best outcome possible for a given problem
Hence this method is applied in minimizing generation cost in power scheduling



Formulation of the problem
Production cost problem is modeled as quadratic programming problem with 

system operating constraints
Provides optimum solution for real power dispatch in finite number of exchange 

steps which avoids complex nesting of iterative loops
Optimum allocation of reactive power using gradient technique



Modeling the problem
Generator dispatch problem concerned with scheduling a generator output “X”, 

based on predicted load so that system cost is minimized
So generation cost is considered in the form 

F(X) = a + dT X + XT W X …………………… (1)
Where, X – [X1, X2….Xn]T Vector of generator active power output
a – generator fixed running cost
d – m-vector of generation linear cost co-efficient
W – m-diagonal matrix of the generator quadratic cost coefficient



Plant constraints
Permissible loading constraints on generator (X), station (S ) and group outputs are specified by upper and lower power limits

XL ≤ X ≤ XU SL ≤ S ≤ SU Sj = Σi ∈ j  Xi i=1,2,..m …………………… (2)
Limit on rate of change of real power output

XL ≤ X ≤ XU SL ≤ S ≤ SU …………………… (3)
Spare plant capacity must be available on demand to supply unscheduled generation in case of error

ΣS=1 to P Ks Xs + R0 > R …………………… (4)
Where, R0 maximum spare capacity available, R is a spare requirement 
Ks is a coefficient, X, S Vector of generator and station active power output respectively



Network constraints
For power balance of total generation

PN + PL (X) = Σi=1 to m Xi …………………… (5)
Where, PN – Network load, PL – Transmission loss
Restriction on nodal reactive power and voltage are considered with

QL ≤ Qg ≤ QU VL ≤ V ≤ VU ………………… (6,7)
Transmission line power flow must also be limited to prevent overloading with constraint related to maximum MVA rating
Generator reactive power output are assumed to be variable and independent of real power output



Generalizing the constraint
Constraints involving real power limitations (equation 2-5) are incorporated in to quadratic programming structure
In general all real power constraint are approximated by linear combination of generator output of the form 

A X ≤ E
Where, A – qxm matrix of constant coefficient , E – q-vector of constraint 
Constraints involving reactive power limitations are satisfied by gradient 

allocation technique
In addition we can include transmission loss 



Real power dispatch
Total transmission power loss (PL) is related to nodal currents I and symmetrical bus impedance matrix ZN

PL + j QL = I * T ZN I ……..……… (8)
Where, I = Ir + j Ii (vectors of nodal current with real and reactive power)

PL = IrT R Ir + IiT R Ii = Σj=1 to n Σk=1 to n (Ikr rkj Ijr + Iki rkj Iji) ..…………… (9)
Also with net power Pk + jQk at bus K

Ik* = ( Pk + jQk )/ { | Vk | (cos θk + jsin θk ) = Ikr – j Iki …………… (10)
Where,                 Ikr = (Pk cos θk + Qk sin θk ) / | Vk |

Iki = (Pk cos θk - Qk sin θk ) / | Vk | .........…… (11)



Real power dispatch continued..
Now equation (9) can be written as, 

PL = Σj=1 to n Σk=1 to n (Pk αkj Pj + Pk βkj Qj – Qk βkj Pj + Qk αkj Qj ) ……. (12)
Where, αkj =  rkj cos θkj / (| Vk | |Vj |)

βkj = - rkj sin θkj / (| Vk | |Vj |) ……(13)
Same can be written in a matrix form with

α = [αkj] = αT and   β = [βkj] = - βT , π/2 ≥ θ ≥ - π/2 
So the real power related to network parameters and steady state data

PL = PT α P + 2 PT β Q + QT α Q



Real power dispatch continued..
In terms of load and generator power component at each node with 

Pk = Pkl + PkG, k = 1, 2 ,.. n
PL = PGT α PG + 2 (PlT α - PlT β) PG + (PlT α – 2 QT β) Pl + QT α Q ……. (15)

With m generator connected to n-nodes,
PL = XT K α KT X + 2 (PlT α – QT β) KT X + (PlT α – 2 QT β) Pl + QT α Q ……. (16)

Where,
k = mxn generator network node connection matrix with elements Kij (of Kt) = (1,0) if generator j is incident or not with node i



Real power dispatch continued..
For real power optimization, the cost function is given by 

Ѱ(x) = F(X) + μ XT α K KT X + 2 μ ( PlT α – QT β ) KT X   ………..........(17)
Where μ – average cost of received power (=Total production cost/ ΣX)
Including equation (1),

Ѱ(x) = c∞ + 2 Co X + XT C X ………………..(18)
Where 2 Co – dT + 2 μ (PlT α – QT β) K

C - μ XT α KT + W, which is symmetric and Ѱ(x) is positive definite..



Reactive Power Dispatch
It is based on minimization of transmission loss function by variation of source reactive output power Qg
Magnitude constraint is of the form

QL ≤ Qg ≤ QU
Steepest descent approach allocates the reactive power such that at iteration k, the new allocation is given by 

Q(k+1) = Qk – h(ΔPL)K ………………………(19)
Where, ( PL)K is a n-gradient vector

( PL)K = (∂PL/∂Q)k = 2(α Q – β P)k .……………………..(20)h – step length to be taken in the direction given by (ΔPL)K 



Reactive Power Dispatch continued..
At any iteration K, overall change in the reactive power will be small compared with the total
Average reactive generation change at each iteration should be approximately zero

δ = 1/r (Σi=1 to n ( i ∈ j) Pli ……………………………..(21)Where j – Node to which reactive sources are connected 
r – number of such nodes

New bus power determined by gradient step length
Q(k+1) = Qk – h ḱ { ( PL)k - δ In …………………………….(22)Where In – n dimensional unit vector with node current

ḱ - nxn matrix indicating which nodes have reactive sources



Reactive Power Dispatch continued..
Change in power loss with alteration in the reactive bus power

ΔPL = ΔQT (Δ PL)K = h (ΔPLT)k (ΔPL )k = (PL)k - (PL)k+1 ………………..(23)
Since Real power distribution (P)K and coefficients (α)K and (β)k remain constant for the reactive dispatch, real power loss reduces to 

Δ PL = (PT)k (β)k – { Qk – Qk+1} + (QT PL /2)k ………………..(24)
Convergence is achieved by calculating “h” using true gradient

h = { QT ΔPL / 2 ΔPLT (ΔPL + β P)}k ………………(25)
If voltage constraints are violated in an a.c load flow based on the new reactive power dispatch, the calculation of Q(k+1) are repeated with the reduced step length.. 



Load Forecasting 
Accurate forecasting model is required for economic generator scheduling 
Spectral expansion method is used for predication
Prediction is completely based on past load data
This avoids possible inaccuracy introduced because of inaccurate weather forecast 



Optimization Procedure
Scheduling problem requires minimization of convex quadratic function of m-variable 

Ѱ(x) = c∞ + 2 Co X + Xt C X
Subject to Q linear inequality constraint

AX ≤ E , X ≥ 0 
Inequality constraint transformed in to equation with slack variable y

Where Ᾱ is of the order q x (q+m)



Optimization Procedure continued..
The problem of finding a basic feasible solution is same in linear and quadratic programming
The constraints may then be used to express basic variables “Y”

Y = Y1, Y2…..Yq
In terms of currently non basic variables “Z”

Z = Z1,Z2…..Zm
As, Y = (A0 + AZ)1
Where index 1 indicates value at the initial trail solution
A – Constraints co-efficient matrix



Optimization Procedure continued..
Equating these variables in objective function in equation (18)

Ѱ(x) = c∞ + 2 Co X + Xt C X
We get, 

Ѱ(x) = (c∞ + 2 Co Z + Zt C Z )1
Rearrangement of the equation gives,

Ѱ(Z)1 = ( ẐT C  Ẑ )1
Where, (Ẑ) = (1, Z1, Z2…..Zm)1T and 

Of the order (m+1)x(m+1)



Optimization Procedure continued..
If (C1)1 is symmetric and the quadratic form XT (C1)1 X is semidefinite,  then for the kth step
The Kuhn–Tucker conditions for optimality are satisfied if (∂Ѱ/ ∂Z)k ≥ 0 and trial point chosen is the optimal solution
If optimum has not reached, then for certain Zi, (∂Ѱ/ ∂Z)k < 0 holds at the trial point and Ѱ may be reduced by making Zi positive



Optimization Procedure summary
1. Input transmission system data, operating limit and initial conditions
2. Calculate bus impedance matrix Zn
3. Establish network loading and perform ac load flow using Gauss-Seidel iteration 

technique
4. Calculate transmission losses
5. Calculate total generation required (load + losses)
6. Solve quadratic problem for real power dispatch



Optimization summary continued..
7. Perform ac load flow with new real power dispatch
8. Calculate transmission losses
9. Test if losses have converged, if not go to step 5
10. Determine system production cost
11. Is reactive power dispatch is required? If not, go to step 15
12. If previous reactive dispatch has been made, has the system production cost 

converged? If so, go to step 15



Optimization summary continued..
13. Allocated reactive power using gradient method
14. Calculate transmission losses and go to step 5
15. Output load flow results, production coast and appropriate schedules



Testing 
This procedure was applied to 22-generator and 10-node section of the British grid system

Comparison of Production cost, Real power loss and number of iterations has been made with linear approximation technique



Results  - Generator dispatch



Results – Transmission line power flows



Results summary
Production cost using proposed method was £2135.3/hr compared with 

£2284.9/hr for linear approximation
Corresponding real power loss were 10.1 MW and 12.8 MW
More uniform voltage profile is obtained with quadratic model
Even distribution of spare capacity
Solution of the full problem required three real power and two reactive power 

dispatch for convergence



Conclusion
Optimization technique can be adopted for continues economic scheduling combined with automatic load frequency control
Relatively fast solution can be obtained for real and reactive power dispatch
Since nonlinearities in the generator cost curve can be included in the quadratic 

formulation, with reduced transmission loss, it produces more economic and 
uniform power distribution
This method can be incorporated with continues load prediction with weather forecasting , can be integrated in to an automatic power system control scheme.
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